skip to main content


Search for: All records

Creators/Authors contains: "Schubnel, Alexandre"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. SUMMARY Hazardous tsunamis are known to be generated predominantly at subduction zones. However, the 2018 Mw 7.5 Palu (Indonesia) earthquake on a strike-slip fault generated a tsunami that devastated the city of Palu. The mechanism by which this tsunami originated from such an earthquake is being debated. Here we present near-field ground motion (GPS) data confirming that the earthquake attained supershear speed, i.e. a rupture speed greater than the shear wave speed of the host medium. We subsequently study the effect of this supershear rupture on tsunami generation by coupling the ground motion to a 1-D non-linear shallow-water wave model accounting for both time-dependent bathymetric displacement and velocity. With the local bathymetric profile of Palu bay around a tidal station, our simulations reproduce the tsunami arrival and motions observed by CCTV cameras. We conclude that Mach (shock) fronts, generated by the supershear speed, interacted with the bathymetry and contributed to the tsunami. 
    more » « less
  2. Southern Tibet is the most active orogenic region on Earth where the Indian Plate thrusts under Eurasia, pushing the seismic discontinuity between the crust and the mantle to an unusual depth of ~80 km. Numerous earthquakes occur in the lower portion of this thickened continental crust, but the triggering mechanisms remain enigmatic. Here we show that dry granulite rocks, the dominant constituent of the subducted Indian crust, become brittle when deformed under conditions corresponding to the eclogite stability field. Microfractures propagate dynamically, producing acoustic emission, a laboratory analog of earthquakes, leading to macroscopic faults. Failed specimens are characterized by weak reaction bands consisting of nanometric products of the metamorphic reaction. Assisted by brittle intra-granular ruptures, the reaction bands develop into shear bands which self-organize to form macroscopic Riedel-like fault zones. These results provide a viable mechanism for deep seismicity with additional constraints on orogenic processes in Tibet. 
    more » « less
  3. Abstract

    Southern Tibet is the most active orogenic region on Earth where the Indian Plate thrusts under Eurasia, pushing the seismic discontinuity between the crust and the mantle to an unusual depth of ~80 km. Numerous earthquakes occur in the lower portion of this thickened continental crust, but the triggering mechanisms remain enigmatic. Here we show that dry granulite rocks, the dominant constituent of the subducted Indian crust, become brittle when deformed under conditions corresponding to the eclogite stability field. Microfractures propagate dynamically, producing acoustic emission, a laboratory analog of earthquakes, leading to macroscopic faults. Failed specimens are characterized by weak reaction bands consisting of nanometric products of the metamorphic reaction. Assisted by brittle intra-granular ruptures, the reaction bands develop into shear bands which self-organize to form macroscopic Riedel-like fault zones. These results provide a viable mechanism for deep seismicity with additional constraints on orogenic processes in Tibet.

     
    more » « less